Date Published:Apr. 01. 2014
Design Documents (Shaft Couplings)
Perform calculations according to the following design procedure in order to select the proper shaft coupling.
Design Procedure
- Calculate the Design Torque
- Select the Size
- Check the Maximum Shaft Hole Diameter and Maximum Rotation Speed
- Conclusion
Selection Example
Motor:
Output 15 kW
Standard motor (4-pole, 60 Hz), 1,750 min-1
Shaft diameter and key: φ42, 12 x 8
Driven device:
Centrifugal pump, operates 8 hours per day
Shaft diameter and key: φ35, 10 x 8
Calculate the Design Torque
Select the overload factor Ko from [Table 1] and obtain the design torque.
T = | 9550・PN・Ko |
n |
T: Design torque (N・m)
PN: Design power (kW)
Ko: Overload factor [Table 1]
n: Rotational frequency(min-1)
Design Torque Calculation Example
According to [Table 1], overload factor Ko = 1.0
Therefore,
Design torque T= | 9550×15×1.0 | = 81.9N・m |
1750 |
Select the Size
Select a shaft coupling with a maximum torque (rated torque for Sure-Flex®) that is equal to or greater than the design torque T from each performance table.
Make sure to select the ideal shaft coupling type taking environment, cost, etc. into consideration.
Size Selection Example
Here, the flexible flanged shaft coupling is used.
Since the design torque is 81.9 N・m,
FCL-140
FCLS-140
are selected.
Check the Maximum Shaft Hole Diameter and Maximum Rotation Speed
Make sure that both the maximum shaft hole diameter and the maximum rotation speed are not less than those of the design conditions. If either or both of the maximum shaft hole diameter and the maximum rotation speed do not satisfy the conditions, select a higher model number.
Maximum Shaft Hole Diameter and Maximum Rotation Speed Checking Example
The maximum shaft hole diameter of FCL-140 is
Bolt side: φ38<φ42 (motor shaft diameter)
Bushing side: φ35=φ35 (driven device shaft diameter)
so the design conditions are not satisfied.
Using the same method, the max. shaft hole diameter of FCLS-140 is
Bolt side: φ42=φ42 (motor shaft diameter)
Bushing side: φ38>φ35 (driven device shaft diameter)
so the design conditions are satisfied.
The max. shaft hole diameter of the higher model number FCL-160 is
Bolt side: φ45>φ42 (motor shaft diameter)
Bushing side: φ38>φ35 (driven device shaft diameter)
so the design conditions are satisfied.
The maximum rotational frequency is
FCL-160 :4000min-1 > 1750min-1
FCLS-140 :6000min-1 > 1750min-1
so the design conditions are satisfied.
Therefore, either
FCL-160
FCLS-140
will be used.
Conclusion
Finally, confirm that the design conditions are satisfied based on the dimensions/performance tables.
Tables 3 and 4 are selection tables that are used when a general-purpose low-voltage three-phase squirrel-cage induction motor is the motor.
The shaft coupling can be easily selected without relying on the above design steps.
Conclusion
FCL-160
FCLS-140
Use either of the above.
[Table 1] ● Flanged shaft coupling overload factor: Ko
Driven Device | Motor | ||||||
---|---|---|---|---|---|---|---|
Machine Used | Electric motor or steam turbine | Steam engine or 4-cylinder or more gasoline engine | Diesel engine or gas engine | ||||
Daily operating time (hours) | |||||||
8~10 | 16~24 | 8~10 | 16~24 | 8~10 | 16~24 | ||
Uniform load (no reverse rotation / low torque startup) | Fluid mixer, centrifugal blowers/exhaust fan (up to 10PS), centrifugal pump, light-load conveyor, electric generator, worm gear reducer | 1.0 | 1.5 | 1.5 | 2.0 | 2.0 | 2.5 |
Uneven load (no reverse rotation / normal shock) | Conveyor, hoist, elevator, line shaft, hole mill, kiln | 1.5 | 2.0 | 2.0 | 2.5 | 2.5 | 3.0 |
Heavy load with impact (with peak / with reverse rotation / full load startup) | Reciprocating compressor, press, hammer mill, crusher, reciprocating pump, marine propeller | 2.0 | 2.5 | 2.5 | 3.0 | 3.0 | 3.5 |
[Table 2] ● FCL (FC200) Selection Table
50Hz | 2-pole・2850min-1 | 4-pole・1425min-1 | 6-pole・950min-1 | 8-pole・725min-1 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Motor Rated Output (kW) |
Shaft Diameter (mm) |
Torque (N・m) |
Overload Factor:Ko | Shaft Diameter (mm) |
Torque (N・m) |
Overload Factor:Ko | Shaft Diameter (mm) |
Torque (N・m) |
Overload Factor:Ko | Shaft Diameter (mm) |
Torque (N・m) |
Overload Factor:Ko | ||||||||
1.0 | 1.5 | 2.0 | 1.0 | 1.5 | 2.0 | 1.0 | 1.5 | 2.0 | 1.0 | 1.5 | 2.0 | |||||||||
0.2 | (11) | 0.683 | 90 | 90 | 90 | (11) | 1.37 | 90 | 90 | 90 | - | - | - | - | - | - | - | - | - | - |
0.4 | (14) | 1.37 | 90 | 90 | 90 | (14) | 2.73 | 90 | 90 | 90 | (19) | 4.1 | 90 | 90 | 90 | - | - | - | - | - |
0.75 | 19 | 2.56 | 90 | 90 | 90 | 19 | 5.12 | 90 | 90 | 90 | 24 | 7.69 | 100 | 100 | 100 | - | - | - | - | - |
1.5 | 24 | 5.12 | 100 | 100 | 100 | 24 | 10.2 | 100 | 100 | 100 | 28 | 15.4 | 112 | 112 | 112 | - | - | - | - | - |
2.2 | 24 | 7.51 | 100 | 100 | 100 | 28 | 15 | 112 | 112 | 112 | 28 | 22.5 | 112 | 125 | 125 | - | - | - | - | - |
3.7 | 28 | 12.6 | 112 | 112 | 112 | 28 | 25.3 | 112 | 125 | 125 | 38 | 37.9 | 140 | 140 | 140 | - | - | - | - | - |
5.5 | 38 | 18.8 | 140 | 140 | 140 | 38 | 37.6 | 140 | 140 | 140 | 38 | 56.4 | 140 | 140 | 140 | - | - | - | - | - |
7.5 | 38 | 25.6 | 140 | 140 | 140 | 38 | 51.2 | 140 | 140 | 140 | 42 | 76.9 | 160 | 160 | 160 | - | - | - | - | - |
11 | 42 | 37.6 | 160 | 160 | 160 | 42 | 75.1 | 160 | 160 | 160 | 42 | 113 | 160 | 160 | 180 | - | - | - | - | - |
15 | 42 | 51.2 | 160 | 160 | 160 | 42 | 102 | 160 | 160 | 180 | (48)・55 | 154 | (180)・200 | 200 | 200 | - | - | - | - | - |
18.5 | 42 | 63.2 | 160 | 160 | 160 | 48 | 126 | 180 | 180 | 200 | 55 | 190 | 200 | 200 | 200 | - | - | - | - | - |
22 | 48 | 75.1 | 180 | 180 | 180 | (48)・55 | 150 | (180)・200 | (180)・200 | 200 | (55)・60 | 225 | (200)・224 | (200)・224 | 224 | - | - | - | - | - |
30 | 55 | 102 | 200 | 200 | 200 | 55 | 205 | 200 | 200 | 200 | 60 | 307 | 224 | 224 | 250 | 65 | 403 | 250 | 250 | 250 |
37 | 55 | 126 | 200 | 200 | 200 | 60 | 253 | 224 | 224 | 224 | (60)・65 | 379 | (224)・250 | 250 | 250 | 75 | 497 | 280 | 280 | 280 |
45 | 55 | 154 | 200 | 200 | 200 | 60 | 307 | 224 | 224 | 250 | 65 | 461 | 250 | 250 | 280 | 75 | 604 | 280 | 280 | 280 |
55 | 55 | 188 | 200 | 200 | 200 | 65 | 376 | 250 | 250 | 250 | 75 | 564 | 280 | 280 | 280 | 85 | 739 | 315 | 315 | 315 |
75 | 55 | 256 | 200 | 200 | - | 75 | 512 | 280 | 280 | 280 | 75 | 769 | 280 | 280 | 315 | 85 | 1010 | 315 | 315 | 315 |
90 | 55 | 307 | 200 | 224 | - | 75 | 615 | 280 | 280 | 280 | 85 | 922 | 315 | 315 | 315 | 95 | 1210 | 355 | 355 | 355 |
110 | 55 | 376 | 200 | - | - | 85 | 751 | 315 | 315 | 315 | 85 | 1130 | 315 | 315 | 315 | 95 | 1480 | 355 | 355 | 355 |
132 | 55 | 451 | 224 | - | - | 85 | 902 | 315 | 315 | 315 | 95 | 1350 | 355 | 355 | 355 | - | - | - | - | - |
160 | 55 | 547 | - | - | - | 95 | 1090 | 355 | 355 | 355 | 95 | 1640 | 355 | 355 | 355 | - | - | - | - | - |
200 | 55 | 683 | - | - | - | 95 | 1370 | 355 | 355 | 355 | - | - | - | - | - | - | - | - | - | - |
60Hz | 2-pole・3450min-1 | 4-pole・1750min-1 | 6-pole・1160min-1 | 8-pole・870min-1 | ||||||||||||||||
0.2 | (11) | 0.56 | 90 | 90 | 90 | (11) | 1.11 | 90 | 90 | 90 | - | - | - | - | - | - | - | - | - | - |
0.4 | (14) | 1.13 | 90 | 90 | 90 | (14) | 2.23 | 90 | 90 | 90 | (19) | 3.36 | 90 | 90 | 90 | - | - | - | - | - |
0.75 | 19 | 2.12 | 90 | 90 | 90 | 19 | 4.17 | 90 | 90 | 90 | 24 | 6.29 | 100 | 100 | 100 | - | - | - | - | - |
1.5 | 24 | 4.23 | 100 | 100 | 100 | 24 | 8.34 | 100 | 100 | 100 | 28 | 12.6 | 112 | 112 | 112 | - | - | - | - | - |
2.2 | 24 | 6.21 | 100 | 100 | 100 | 28 | 12.2 | 112 | 112 | 112 | 28 | 18.5 | 112 | 112 | 125 | - | - | - | - | - |
3.7 | 28 | 10.4 | 112 | 112 | 112 | 28 | 20.6 | 112 | 112 | 125 | 38 | 31.1 | 140 | 140 | 140 | - | - | - | - | - |
5.5 | 38 | 15.5 | 140 | 140 | 140 | 38 | 30.6 | 140 | 140 | 140 | 38 | 46.2 | 140 | 140 | 140 | - | - | - | - | - |
7.5 | 38 | 21.2 | 140 | 140 | 140 | 38 | 41.7 | 140 | 140 | 140 | 42 | 62.9 | 160 | 160 | 160 | - | - | - | - | - |
11 | 42 | 31 | 160 | 160 | 160 | 42 | 61.2 | 160 | 160 | 160 | 42 | 92.3 | 160 | 160 | 160 | - | - | - | - | - |
15 | 42 | 42.3 | 160 | 160 | 160 | 42 | 83.4 | 160 | 160 | 160 | (48)・55 | 126 | (180)・200 | (180)・200 | 200 | - | - | - | - | - |
18.5 | 42 | 52.2 | 160 | 160 | 160 | 48 | 103 | 180 | 180 | 180 | 55 | 155 | 200 | 200 | 200 | - | - | - | - | - |
22 | 48 | 62.1 | 180 | 180 | 180 | (48)・55 | 122 | (180)・200 | (180)・200 | 200 | (55)・60 | 185 | (200)・224 | (200)・224 | (200)・224 | - | - | - | - | - |
30 | 55 | 84.7 | - | - | - | 55 | 167 | 200 | 200 | 200 | 60 | 252 | 224 | 224 | 224 | 65 | 336 | 250 | 250 | 250 |
37 | 55 | 104 | - | - | - | 60 | 206 | 224 | 224 | 224 | (60)・65 | 311 | (224)・250 | 250 | 250 | 75 | 414 | 280 | 280 | 280 |
45 | 55 | 127 | - | - | - | 60 | 250 | 224 | 224 | 224 | 65 | 378 | 250 | 250 | 250 | 75 | 504 | 280 | 280 | 280 |
55 | 55 | 155 | - | - | - | 65 | 306 | 250 | 250 | 250 | 75 | 462 | 280 | 280 | 280 | 85 | 615 | 315 | 315 | 315 |
75 | 55 | 212 | - | - | - | 75 | 417 | 280 | 280 | 280 | 75 | 629 | 280 | 280 | 280 | 85 | 839 | 315 | 315 | 315 |
90 | 55 | 254 | - | - | - | 75 | 501 | 280 | 280 | 280 | 85 | 755 | 315 | 315 | 315 | 95 | 1010 | 355 | 355 | 355 |
110 | 55 | 310 | - | - | - | 85 | 612 | 315 | 315 | 315 | 85 | 923 | 315 | 315 | 315 | 95 | 1230 | 355 | 355 | 355 |
132 | 55 | 372 | - | - | - | 85 | 734 | 315 | 315 | 315 | 95 | 1110 | 355 | 355 | 355 | - | - | - | - | - |
160 | 55 | 451 | - | - | - | 95 | 890 | 355 | 355 | 355 | 95 | 1340 | 355 | 355 | 355 | - | - | - | - | - |
200 | 55 | 564 | - | - | - | 95 | 1110 | 355 | 355 | 355 | - | - | - | - | - | - | - | - | - | - |
● Numbers in the table represent the size. The model number is displayed by adding "FCL" before these numbers.
●The shaft end dimensions depend on JEM1400-1991 (Dimensions of general-purpose low-voltage three-phase squirrel-cage induction motors).
●Numbers in parentheses indicate fully closed motors.